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which resembles a treatment in the old strong-coupling 
theory. 

Another possibility of extension is to search for a 
larger group which includes the SU6 group and the 
Lorentz group as subgroups. One possible group of this 
kind is the SL6 group (unimodula linear-transformation 
group in a six-dimensional complex-vector space), 
which contains SL20SL3 as a subgroup. However, it 

I. INTRODUCTION 

DURING the past few years, the low-energy pion-
nucleon system has been subjected to extensive 

investigations within the framework of dispersion 
theory. The main feature of such investigations has 
been to calculate the pion-nucleon scattering amplitude 
(to be precise, the various low angular-momentum 
partial-wave amplitudes) given by forces that arise 
from the low-mass jntermediate states in the crossed 
w—N and TW—+NN channels.1,2 These low-mass states 
are the familiar nucleon and the P3/2, T=%, w—N reso
nance, N* for the crossed TT—N channel and the T= 1, 
J=l, 7T7T resonance, i.e., the p meson, for the channel 
7r7r—>NN. For a more accurate determination of the 
TT—N scattering amplitude, one must of course incorpo
rate in the problem the forces that arise from the higher 
mass intermediate states in the crossed channels. In the 
language of the N/D method, that provides the ap
propriate technique for such calculations, this amounts 
to taking into account the contributions that arise from 
the distant part of the left-hand cut of the various 
partial-wave amplitudes in the s plane. This, however, 
is a difficult problem. A method to tackle it has been 

f Present address: Tata Institute of Fundamental Research, 
Bombay, India. 

XS. C. Frautschi and J. D. Walecka, Phys. Rev. 120, 1486 
(1960). We follow the notation of this paper; note that our units 
a r e#=c = m,r=l. 

2 J. S. Ball and D. Wong, Phys. Rev. 133, B179 (1964). 

seems to be impossible to have a wave equation com
patible with this group without extending the four-
dimensional Minkowsky space to a higher dimensional 
space (36-dimensional space!).16 

16 After this paper was written, the author became aware of a 
paper by F. Gtirsey and L. A. Radicati [Phys. Rev. Letters 1.3, 
173 (1964)], in which they claim that the relativistic extension 
of the theory is possible. 

suggested by Balazs,3 wherein these far left-hand cut 
contributions can be approximated by a set of pole 
terms; the locations of these poles are known but the 
residues are, as such, unknown constants. However, if 
one knows the amplitude correctly at any point in the 
low-energy region, these residues can be determined by 
matching, at this point, the expression for the ampli
tude involving these residues with the known ampli
tude.4 The latter quantity can be obtained from the ab
sorptive parts of the crossed channels through a 
fixed-energy dispersion relation. 

The above method, if reliable, would certainly lead 
to a more accurate determination of any scattering 
amplitude than if the far left-hand cut contributions 
were just ignored, but one would still have to treat the 
crossed channels as known. For instance, if the various 
low-energy, low angular-momentum partial-wave am
plitudes for TT—N scattering were calculated and one 
thus found a bound state (nucleon) and a resonance 
(iV*), it would be only after one inserted them before
hand in the crossed ir—N channel. At this stage, how
ever, if the criterion of self-consistency5,6 is invoked, 

3 L. A. P. Balazs, Phys. Rev. 128, 1939 (1962). 
4 One will have to match the amplitude and the first n—1 de

rivatives, if the number of Balazs residues to be determined is n. 
5 G. F. Chew, Proceedings of the International Conference on 

High-energy Nuclear Physics, Geneva, 1962, edited by J. Prentki 
(CERN, Geneva, 1962), p. 525. 

6 G. F. Chew, Phys. Rev. Letters 9, 233 (1962). 
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and found compatible with the results of the calcula
tion—by which we mean if the crossed channel *•—N 
forces arising from N and N* can be described in terms 
of certain parameters, the numerical values of which 
coincide with those of N and N* obtained in our calcu
lation—we will have explained these objects without 
having to really assume them. I t is of course believed 
that the amplitude that the calculation yields is unique. 

In the present calculation, we have tried to study the 
nucleon in the above spirit. Actually, it would have 
been more desirable to calculate both N and AT* at one 
stroke, as one knows that the nucleon provides the main 
force to create JV*, and iV* provides the main force to 
bind the nucleon.6 However, we shall see that in the 
present approach, given the N*, the calculation of N 
itself becomes a self-consistency problem. This is what 
happens in the case of N* also, which has been dealt 
with by Singh and Udgaonkar.7 The present calculation 
can be taken to be complementary to theirs. 

Before going into the details of the nucleon problem, 
we would, however, like to make a comment on the 
possible pitfalls that are associated with the matching 
criterion that one needs to invoke in the calculations of 
the present type. I t seems that the final results would 
depend crucially on the choice of the point at which one 
matches the N/D amplitude with the one obtained 
from the fixed-energy dispersion relation. This certainly 
seems to happen for the ir—w problem.8 In the present 
calculation, although the region where one could 
"match" has to be chosen quite carefully, as discussed 
a t the end of this paper, yet one has a finite region from 
which one could choose the matching point. We find 
that there certainly is variation in our results as we vary 
the matching point in this region. However, it is grati
fying to note that the particular matching point corre
sponding to which we have done detailed calculations 
for the nucleon problem, i.e., for the P1/2, T= \ partial-
wave amplitude, leads to fairly satisfactory results for 
this as well as for several other low angular-momentum 
partial waves.7*9'10 This makes the present approach 
quite worthwhile, in the sense that although one 
probably has the above "preferred" matching point as 
a parameter, it suffices to enable one to calculate all low 
angular-momentum partial waves. Of course it is true 
that the meaning of the parameter is at the moment 
obscure.11 

I t should be mentioned that since, in the present cal
culation, the nucleon mass turns out to be lower than 
the actual one, the calculated -K—N threshold is lower 
than the physical one. The physical threshold of course 

7 V. Singh and B. M. Udgaonkar, Phys. Rev. 130, 1177 (1963). 
8 M. L. Mehta and P. K. Srivastava, University of Delhi, 1964 

(to be published). 
9 S. K. Bose and S. N. Biswas, 134, B635 (1964). 
10 P. Narayanaswamy and L. K. Pande, Nuovo Cimento 33, 468 

(1964). 
11 Note that this parameter has certainly nothing to do with the 

cutoff parameter that one needs in calculations of bound states 
and resonances in other approaches, e.g., Ref. 2 and 12. 

means the point s=(m+l)2 with m~6.8—the experi
mental nucleon mass; the calculated threshold corre
sponds to w—6.3, which is the mass we obtain for the 
nucleon. Hence, there is some ambiguity as to whether 
the scattering length obtained at the calculated thresh
old should be a more valid quantity for comparison with 
the experimental scattering length. We have calculated 
the scattering length at both thresholds, but have laid 
emphasis only on a qualitative comparison. 

The self-consistent value of the coupling constant 
obtained by us is in fair agreement with the observed 
one, but it is smaller than the latter. In the light of a 
calculation by Abers and Zemach,12 who get g2==:19, 
this at first sight seems a little curious. However, this 
difference is not quite unexpected, as the above authors 
ignore the forces other than those arising from N, N*, 
and p exchange (i.e., the forces coming from the distant 
part of the left-hand cut), whereas we do not. Another 
point that should be kept in mind is that if one obtains 
a bound state arising principally from the force due to 
the exchange of this bound state itself, the coupling 
constant one calculates is the same as the one that 
occurs in the force term. In that case, if one finds that 
the calculated bound state is more tightly bound than 
is observed, the force responsible for this binding should 
also exceed the actual force. Consequently, the calcu
lated coupling constant should turn out to be larger 
than the observed one. The situation we encounter is, 
however, not the same, as the main force for the binding 
of the nucleon comes, not from the exchange of the 
nucleon itself, but from the exchange of N*. 

II. DETAILS 

The kinematical details of the problem are well 
known. Using the notation of Ref, 1, we choose our 
amplitude as 

« i i ( 5 ) s ^ ( M f l W = ( T P / W » sinSn. (1) 

We have 

gll(s)^(l/32Tq'){l(W+my-lXA1+(W-m)B12 
+£(W-my-lT-Ao+(W-tn)Bo]}, (2) 

where Ah Bh and Ao, B0 are the Z= 1 and Z=0 partial-
wave projections of the T=% combinations of the in
variant amplitudes A±(s,tyu) and B±(s}t,u). 

We can express gn(s) as N/D> with D having the 
unitarity cut and N incorporating in it all other singu
larities of the amplitude gn(s)(Fig. 1) : 

gn(s) = N(s)/D(s) . (3) 

D(s), after one subtraction, can be expressed as 

Z)(*) = l / dsT. (4) 

5-=w2 is, as usual, the square of the center-of-mass 
energy for the "direct" 71—-N channel. We shall work in 

12 E. Abers and C. Zemach, Phys. Rev. 131, 2305 (1963). 
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the s plane throughout.13 The relevant (approximate) 
analytic structure of N(s) is displayed by the relation 

#(*) = + + - / dsf
 : 

S~Si S—S% irJ-oo Sf — S 
(5) 

The amplitude gn(s) is now known to the extent of the 
Balazs residues bz and b^ These residues, however, can 
be determined by matching the amplitude gn(s), as 
given by Eqs. (3), (7), and (8), with that calculated 
from the fixed-energy dispersion relations: 

where the first two terms are the approximate expres
sions for the shortcuts arising from the crossed channel 
AT* and N respectively. The residues bx and b2 are of 
course known1*6'14: 

& I = ( 3 2 / 9 ) * I « ^ S 8 J D ( * I ) , 

b2=y2mzD(m2) . 
The remaining part of the N function is approxi

mated, following the method of Balazs, by a two-pole 
expression: 

fa/(s—sz)+bA/(s—st) , (6) 

where7 sz= — m2, s^— — 16m2 and b$ and b± are two un
known residues. Thus we have15 

1 r™ A^{u\s) 1 /•" AtK^s) 
A%(s,t,u)=-i duf 

7rJ (w+l)2 Uf — U IT J 4 

i r At{( 
- dtf— 

•t 

where 

A1 = A+, A2=A~, AZ=B+, A*=B~ (9) 

N(s) = T,bi/(s-Si), (7) 

D(s) = l-
(s—so) so) r 

TT J (• 

dsf-
foW 

There is a crossed-channel nucleon pole term in 
B±(s,t,u), and a direct-channel one, which in the spirit 
of Singh and Udgaonkar,7 can be taken as coming from 
the high v! and high tf regions in the above integrals. 
The lower regions of these integrals are presumably 
exhausted once we take into account iV* in the 
^-channel absorptive parts and the p meson in the 
/-channel absorptive parts. Projecting out the relevant 
partial waves from A±(s,t,u) and B±(s,t,u) and sub
stituting the results in Eq. (2), we obtain 

(m+i)2 (s'—s)(s'—So) 
4 

XE 
h gii(s)=gi^(s)+gnlN*)(s)+gi&)(s) , (10) 

< 0 ' — Si) 
(8) 

where 

gn<w)W= 
2g2s2 

[ ( 5 1 / 2 + m ) 2 - l ] [ ( 5 1 / 2 - w ) 2 - l ] l [ ( 5 1 / 2 - w ) 2 - l ] 

(sll2—m) 
-QA i-

2s(2+m2-s) 

[ ( ^ 2 + w ) 2 - 1 ] [ ( ^ 2 - w ) 2 - 1 ] > 

(sW+m) 

gu<VHs) = 

[ (^ 2 +w) 2 - l ] 

3 2 W V ^ W 

QA l-
2s(2+m2-s) 3g2s2{sl'2+m) 

[ ( ^ / 2 + m ) 2 - l ] [ ( ^ 2 - w ) 2 - l ] / J Z(s^+m)2-l2(s-m2) 

QI(XR) f(WR-s1i2+2m)3xx (WR+s^2-2m) 

(ID 

Vsli2-2m)\ 

-m)2-\ ) 3 [ ( ^ 2 + w ) 2 - l ] [ ( s 1 / 2 - m ) 2 - 1 ] I l(s^2-m)2-1]\ (WR+m)2-1 {WR-m) 

QO(XR) /(WR+s1i2+2m)3xx (WR-s^2-2m) 

>> ( ' ) = -
12s2 

[ ( ^ 2 + m ) 2 - 1 ] \ (WR+m)2- 1 (WR-

1 / 2stR 

< -
=ei( i 

Tl(.sll2+m)i-lX(.sll2-my-i'] l [ ( i l ' 2 - « ) 2 - l ] \ [ ( 5 1 ' 2 + w ) 2 - l ] [ ( 5 1 ' 2 - w ) 2 - l ] 

XZ(s1»-m)(y1+2y2)-(y2/m)(s+yB-m*-l)~] 

2stB \ 

-sll*-2m)\) 

-my-\ ) \ ' 
(12) 

[ (^/ 2+«) 2 - l ] 
<3o(i-

« ) 2 - i l \ [( / '2+w)2- l][(s1/2- mf~ 1]/ 

X[(51/2+m)(71+272)+(72/«)(^+|^-w2-l)]l , (13) 

13 The kinematical singularities that the amplitude now has can, in principle, be incorporated in the N function; we shall, however, 
ignore them, as the discontinuities arising from them are not needed in our calculation. 

14 G. F. Chew and F. E. Low, Phys. Rev. 101, 1570 (1956). 
16 Since the nucleon bound state pole in the calculated N/D amplitude occurs at s = S2=im2

} some caution is needed in handling the 
term in the N-iunction that arises from the crossed nucleon "pseudopole." One way out is to replace $2 by s2—«, while doing the 
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with the abbreviations, coupling constant in terms of it, we have 

#22=1 + 
2s(2+2m2-s-WR

2) 

xx=l+ 

[ ( ^ 2 + w ) 2 - l ] [ ( ^ 2 - w ) 2 - l ] 

2WR
2(2m2+2-s~WR

2) 

WR
A-2WR

2(m2+l)+(m2-l)2 

and 

tR = m2 = 30,733=0.12,7!= - 4 . 9 1 and 7 2 = - 1 1 . 7 . 

[We have chosen these numerical values to be the same 
as in Ref. 7.] 

The amplitude and its derivative as given by Eqs. (3), 
(7), and (8) can now be matched with that given by 
Eqs. (10)—(13) and it corresponding derivative. The two 
Balazs residues can thus be determined. Consequently, 
the N/D amplitude is now completely known. This 
amplitude yields a bound state at s = sp, i.e., we have 

D(S = SP) = 0. (14) 

The residue of the pole in gn(s), corresponding to this 
bound state, is essentially the w—N coupling constant. 
This residue can be calculated, and expressing the 

( 4 y P - l ) N(sP) 

6(sPr2 D'(sP) 
(15) 

The requirement that the calculated nucleon mass 
\ A P and the coupling constant g2, as given by Eq. (15), 
equal the nucleon mass and the ir—N coupling constant 
which we fed in through Eqs. (10)-(13),16 is the self-
consistency aspect of the problem. 

With the matching point at s = 33.64,17 we achieve 
self-consistency for a mass \/sP~6.3 and g2~12. The 
situation is depicted in Figs. 2 and 3. We have also 
obtained the low-energy phase shifts (Fig. 4) and the 
quantity gz cot5n (Fig. 5) from our self-consistently 
calculated amplitude. The scattering length that we 
obtain for our calculated threshold is 0 n ~ — 0.16, and 
that for the physical threshold is flu--0.086. In 
either case, the calculated scattering length is in good 
qualitative agreement with the experimentally known 
value an=-0 .104±0 .006 . 1 8 

I t is worth noting that if one is not interested in cal
culating the nucleon pole parameters but only the 
p1/2> T=i, ir—N phase shifts, the Balazs residues can 
themselves be calculated by demanding that the N/D 
amplitude have the nucleon pole with the correct 

FIG. 1. Approximate 
singularity structure 
of the partial-wave 
pion-nucleon scattering 
amplitude. 

S-TLANE 

CROSSE} N - CUT 

• CROSSEJ) N-CUT 

(o,*1wf (o.76< 

/ Otft-i-J 

- Q c*-*,)1- (IM-H;1-

calculation (as is done in Ref. 6) and finally let e—> 0. We found it more convenient to use the form D (s) = 1— (s—s0)/ (S2—S0) near 
s=s2 = ni2, so that b2/(s-S2) = ifm3D(m2)/(s-S2) could be written as ifms/(s0-S2) and, in this form, this term did not cause any 
trouble. Near s = s2j the above ansatz for D(s) was always found to be a very good approximation for the calculated D(s). 

16 Actually, in the present problem these quantities enter also through the crossed-channel nucleon contribution to the N function. 
Further, as the nucleon is one of the incoming (and outgoing) particles, its mass appears at a few more places, namely, in the N* ex
change contribution to the N function, in the Balazs pole terms, and in defining the threshold itself. 

17 We have chosen the subtraction point to be the same as the matching point. 
18 W. S. Woolcock, Proceedings of Aix-en-Provence International Conference on Elementary Particles (Centre d'Etudes Nucleaires de 

Saclay, Seine et Oise, 1961), p. 459. 
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mi**6-* 

*W=: 6.5" 

ta^t*6.^ 

FIG. 2. Variation of 
the output coupling con
stant with input value, 
for various values of 
input nucleon mass Win. 
The dashed line corre
sponds tO gin2 ~gout2. 

parameters. This determines the amplitude completely 
and one now also has the correct threshold. Such an 
approach was tried by Balazs.19 He, however, did not 

include the shortcut due to the crossed-channel N* in 
his N function. A recalculation of the P1/2, T = | phase 
shifts with his method, but with this additional cut in 

6.5 

r 

*.3 i 

/ 
FIG. 3. Graph showing mm versus 

wout. For any given win, m0ut was cal
culated by using the coupling constant 
gin2=gout2=g2, obtained from Fig. 2. 
Note that Win=w0ut«6.3, for which 
Fig. 2gives£in2=£out2«12. 

63 
4 

19 L. A. P. Balazs, Phys. Rev. 128, 1935 (1962). 
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sa.t» y f r ^ feo*frj- fcs.^ 7o.fcy 75.6(f ^Q.feff ^ s . ^ go. 64. 

FIG. 4. Pi/2, r = J pion-nucleon phase shifts plotted against the cm. energy squared, s (expressed in pion mass units). 

FIG. 5. <f cot5n(s) versus s. The dashed line corresponds to the actual threshold, (7.8)2. 

the N function, would presumably give a better D function (to be precise, the real part of D) shows any 
result.20,21 other zero in the region above threshold, which could 

In the present calculation, we tried to see whether the be identified with a possible P1/2, T=%, w—N reso-
20 B. M. Udgaonkar (private communication). (1963)3 have calculated these phase shifts in a different approach, 
21N- Khuri and B. M. Udgaonkar fPhys. Rev. Letters 10? 172 in which the nucleon is assumed to be a Regge pole. 
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nance.22 The answer was in the negative. The D function 
simply becomes more and more negative after passing 
through zero corresponding to the bound state 
(nucleon). This behavior persists even when one adds 
the contribution of the possible P1/2, T=% resonance 
with a mass around 1485 MeV,22 and the width within 
a wide range of possibility, in the amplitude gu(s) in 
Eq. (10). This contribution is simply 

gn<p)(s)=gn(P)H(s)+gnmL(s), (16) 

W V Y P [ ( * 1 / 2 - W ) 2 - I ] 
with 

gn iP)B(A = M 
and 

gu<»LM 

l(Wp-my-i2(wP-w) 
Wp><fpyP 

(17) 

6<fl{WP-mf~r\ 

X{l(sll2+my-l'](Wp+s1ii-2m)Q1(xp) 

+l(s1i2-m)i-l2(sll2+2m-Wp)Qa(xP)} , 

(18) 

where yp is the reduced half-width of the resonance, and 

2s(2+2m2-s-WP
2) Xp=l-

[(^2+w)2-l][(^2-w)2-l] 

If there really is a resonance present, it would be 
difficult to produce it in the present approach, as one 
does not know how one could manage a D function with 
the required behavior. 

III. VARIATION OF MATCHING POINT 

In this section, we would like to comment briefly on 
the situation with regard to the change in the matching 
point. I t should be noted that the presence of the short 
iV* cut and the short nucleon cut, both of which lie 
between the left-hand cut and the physical cut,23 re
stricts the region of the real s accessible for matching 
purposes considerably, as the matching point should be 
as far away from all singularities as is possible. Another 
point to be noted is that the end points of both the short 
cuts and the threshold (the branch point for the physi
cal cut) are all functions of the nucleon mass. The posi-

22 L. D. Roper, Phys. Rev. Letters 12, 340 (1964). 
23 Although in the N function these cuts are approximated by 

pole terms, they show up explicitly through Eqs. (11) and (12). 

tions of all these points consequently change as we vary 
the input nucleon mass. Many points which could be 
used for matching do not remain good as we vary the 
input mass in a range within which self-consistency is 
expected. 

The matching point used in the calculations of the 
last section is a rather "safe" one, in addition to being 
the most convenient from the calculational point of 
view. The points close to this one are also relatively 
safe. We tried, for instance, the point s=so=2S.O. The 
results did show variation: the mass was close to 6.0 
but the coupling constant changed by almost 50%. We 
also tried points s=so=45.0. This point is quite close 
to, in fact slightly above, the point where self-con
sistency is expected, i.e., the point where the N/D 
amplitude has the nucleon pole. In this region for match
ing, the Balazs residues fluctuate wildly as we vary the 
input mass. The reason is that gn(N)(s = so) has the de
nominator (so—m2)y which makes gn(ivr)(s) change sign 
through infinity as we vary the input from m2<So to 
m2>so. Although one can get results in this region, they 
cannot be taken seriously. That a situation of this sort 
occurs in calculations of bound states (and not of reso
nances, as resonances occur above thresholds where one 
does not match anyway) has been noted earlier also.24 

In conclusion, it should be said that although the 
region in which one could move the matching point is 
not really arbitrarily large, yet the final results are not 
quite stable against whatever variation in the position 
of the matching point one is legitimately allowed to try. 
The reason is, presumably, that the amplitude one cal
culates to match with is quite approximate. Within all 
these limitations, however, the present method does 
seem to be useful in the context of the pion-nucleon 
problem, as one gets interesting results for all low 
angular-momentum partial waves by using the same 
matching point. 
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